
www.umbc.edu

CMSC201
 Computer Science I for Majors

Lecture 15 – Program Design

Prof. Katherine Gibson

Prof. Jeremy Dixon

Based on slides from the book author, and previous iterations of the course

www.umbc.edu

Last Class We Covered

• File I/O
– Input

• Reading from a file
• read(), readline(), readlines(), for loops

– Output

• Writing to a file

• Manipulating strings (and lists of strings)

– split(), join()

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To discuss the details of “good code”

• To learn how to design a program

• How to break it down into smaller pieces

– Top Down Design

• To introduce two methods of implementation

• To learn more about Modular Development

4

www.umbc.edu

“Good Code” – Readability

www.umbc.edu

Motivation

• We’ve talked a lot about certain ‘good habits’
we’d like you all to get in while writing code

–What are some of them?

• There are two main reasons for this

–Readability

–Adaptability

6

www.umbc.edu

Readability

• Having your code be readable is important,
both for your sanity and someone else’s

• Having highly readable code makes it easier to:

– Figure out what you’re doing while writing the code

– Figure out what the code is doing when you come
back to look at it a year later

– Have other people read and understand your code

7

www.umbc.edu

Improving Readability

• Improving readability of your code can be
accomplished in a number of ways

– Comments

– Meaningful variable names

– Breaking code down into functions

– Following consistent naming conventions

– Programming language choice

– File organization

 8

www.umbc.edu

Readability Example

• What does the following code snippet do?
def nS(p, c):

 l = len(p)

 if (l >= 4):

 c += 1

 print(p)

 if (l >= 9):

 return p, c

 # FUNCTION CONTINUES...

• There isn’t much information to go on, is there?

9

www.umbc.edu

Readability Example

• What if I added meaningful variable names?
def nS(p, c):

 l = len(p)

 if (l >= 4):

 c += 1

 print(p)

 if (l >= 9):

 return p, c

 # FUNCTION CONTINUES...

10

www.umbc.edu

Readability Example

• What if I added meaningful variable names?
def nextState(password, count):

 length = len(password)

 if (length >= 4):

 count += 1

 print(password)

 if (length >= 9):

 return password, count

 # FUNCTION CONTINUES...

11

www.umbc.edu

Readability Example

• And replaced the magic numbers with constants?
def nextState(password, count):

 length = len(password)

 if (length >= 4):

 count += 1

 print(password)

 if (length >= 9):

 return password, count

 # FUNCTION CONTINUES...

12

www.umbc.edu

Readability Example

• And replaced the magic numbers with constants?
def nextState(password, count):

 length = len(password)

 if (length >= MIN_LENGTH):

 count += 1

 print(password)

 if (length >= MAX_LENGTH):

 return password, count

 # FUNCTION CONTINUES...

 13

www.umbc.edu

Readability Example

• And added vertical space?
def nextState(password, count):

 length = len(password)

 if (length >= MIN_LENGTH):

 count += 1

 print(password)

 if (length >= MAX_LENGTH):

 return password, count

 # FUNCTION CONTINUES...

 14

www.umbc.edu

Readability Example

• And added vertical space?
def nextState(password, count):

 length = len(password)

 if (length >= MIN_LENGTH):

 count += 1

 print(password)

 if (length >= MAX_LENGTH):

 return password, count

 # FUNCTION CONTINUES...

15

www.umbc.edu

Readability Example

• Maybe even some comments?
def nextState(password, count):

 length = len(password)

 if (length >= MIN_LENGTH):

 count += 1

 print(password)

 if (length >= MAX_LENGTH):

 return password, count

 # FUNCTION CONTINUES...

16

www.umbc.edu

Readability Example

• Maybe even some comments?
def nextState(password, count):

 length = len(password)

 # if long enough, count as a password

 if (length >= MIN_LENGTH):

 count += 1

 print(password)

 # if max length, don't do any more

 if (length >= MAX_LENGTH):

 return password, count

 # FUNCTION CONTINUES...

17

www.umbc.edu

Readability Example

• Now the purpose of the code is a bit clearer!

– (It’s actually part of some code that generates a
complete list of the possible passwords for a
swipe-based login system on a smart phone)

• You can see how small, simple changes
increase the readability of a piece of code

18

www.umbc.edu

Commenting is an “Art”

• Though it may sound pretentious, it’s true

• There are NO hard and fast rules for when a
piece of code should be commented

– Only guidelines

– NOTE: This doesn’t apply to required comments
like file headers and function headers!

19

www.umbc.edu

General Guidelines

• If you have a complex conditional, give a brief
overview of what it accomplishes
check if car fits customer criteria

if color == "black" and int(numDoors) > 2 \

 and float(price) < 27000:

• If you did something you think was clever,
comment that piece of code

– So that “future you” will understand it!

20

www.umbc.edu

General Guidelines

• Don’t write obvious comments
iterate over the list

for item in myList:

• Don’t comment every line
initialize the loop variable

choice = 1

loop until user chooses 0

while choice != 0

21

www.umbc.edu

General Guidelines

• Do comment “blocks” of code

calculate tip and total - if more than

5 guests, set percent to minimum of 15%

if (numGuests > PARTY_OF_FIVE):

 percent = MIN_TIP

tip = bill * percent

total = bill + tip

22

www.umbc.edu

General Guidelines

• Do comment nested loops and conditionals
listFib = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

listPrime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

iterate over both lists, checking to see if each

fibonacci number is also in the prime list

for num1 in listFib:

 for num2 in listPrime:

 if (num1 == num2):

 print(num1, "is both a prime and a \

 Fibonacci number!")

23

www.umbc.edu

General Guidelines

• Do comment very abbreviated variables names
(especially those used for constants)

– You can even put the comment at the end of the line!

MIN_CH = 1

MAX_CH = 5

MENU_EX = 5

P1 = "X"

P2 = "O"

24

minimum choice at menu

maximum choice at menu

menu choice to exit (stop)

player 1's marker

player 2's marker

www.umbc.edu

“Good Code” – Adaptability

www.umbc.edu

Adaptability

• Often, what a program is supposed to do
evolves and changes as time goes on

– Well-written flexible programs can be easily
altered to do something new

– Rigid, poorly written programs often take a lot of
work to modify

• When coding, keep in mind that you might
want to change or extend something later

26

www.umbc.edu

Adaptability: Example

• Remember how we talked about not using
“magic numbers” in our code?

27

Bad:

def makeGrid():

 temp = []

 for i in range(0, 10):

 temp.append([0] * 10)

 return temp

Good:

def makeGrid():

 temp = []

 for i in range(0, GRID_SIZE):

 temp.append([0] * GRID_SIZE)

 return temp

0 and 1 are not “magic”
numbers – why?

www.umbc.edu

Adaptability: Example

• In the whole of this program we use
GRID_SIZE a dozen times or more

– What if we want a bigger or smaller grid?

– Or a variable sized grid?

– If we’ve left it as 10, it’s very hard to change

• But GRID_SIZE is very easy to change

– Our program is more adaptable

28

www.umbc.edu

Solving Problems

www.umbc.edu

Simple Algorithms

• Input

– What information we will be given, or will ask for

• Process

– The steps we will take to reach our specific goal

• Output

– The final product that we will produce

30

www.umbc.edu

More Complicated Algorithms

• We can apply the same principles of input,
process, output to more complicated
algorithms and programs

• There may be multiple sets of input/output,
and we may perform more than one process

31

www.umbc.edu

Complex Problems

• If we only take a problem in one piece, it may
seem too complicated to even begin to solve

–A program that recommends classes to take
based on availability, how often the class is
offered, and the professor’s rating

–Creating a video game

32

www.umbc.edu

Top Down Design

www.umbc.edu

Top Down Design

• Computer programmers use a divide and
conquer approach to problem solving:

– Break the problem into parts

– Solve each part individually

– Assemble into the larger solution

• These techniques are known as
top down design and modular development

34

www.umbc.edu

Top Down Design

• Breaking the problem down into pieces makes it
more manageable to solve

• Top-down design is a process in which:

– A big problem is broken down into small sub-problems

• Which can themselves be broken down into even
smaller sub-problems

–And so on and so forth…

35

www.umbc.edu

Top Down Design: Illustration

• First, start with a
clear statement of
the problem or
concept

• A single big idea

36

Big Idea

www.umbc.edu

Top Down Design: Illustration

• Next, break it down
into several parts

37

Big Idea

Part 1 Part 2 Part 3

www.umbc.edu

Top Down Design: Illustration

• Next, break it down
into several parts

• If any of those parts
can be further
broken down, then
the process
continues…

38

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.B

www.umbc.edu

Top Down Design: Illustration

• And so on…

39

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.B Part 2.B.1

Part 2.B.2

www.umbc.edu

Top Down Design: Illustration

• Your final design
might look like this
chart, which shows
the overall structure
of the smaller pieces
that together make
up the “big idea” of
the program

40

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.B Part 2.B.1

Part 2.B.2

www.umbc.edu

Top Down Design: Illustration

• This is like an
upside-down “tree,”
where each of the
nodes represents a
process (or a
function)

41

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.B Part 2.B.1

Part 2.B.2

www.umbc.edu

Top Down Design: Illustration

• The bottom nodes
represent pieces
that need to be
developed

• They are then
recombined to
create the solution to
the original problem

42

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.B Part 2.B.1

Part 2.B.2

www.umbc.edu

Analogy: Paper Outline

• Think of it as an outline for a paper you’re
writing for a class assignment

• You don’t just start writing things down!

– You come up with a plan of the important points
you’ll cover, and in what order

– This helps you to formulate your thoughts as well

43

www.umbc.edu

Implementing from a
Top Down Design

www.umbc.edu

Bottom Up Implementation

• Develop each of the
modules separately

– Test that each one
works as expected

• Then combine into
their larger parts

– Continue until the
program is complete

45

Big Idea

Part 1 Part 2 Part 3

Part 2.A Part 2.B Part 2.C Part 3.A

Part 3.B Part 2.B.1

Part 2.B.2

www.umbc.edu

Bottom Up Implementation

• To test your functions, you will probably use
main() as a (temporary) test bed

• Call functions with different test inputs

– How does function ABC handle zeros?

– Does this if statement work right if XYZ?

– Ensure that functions “play nicely” together

46

www.umbc.edu

Top Down Implementation

• Create “dummy” functions that fulfill the
requirements, but don’t perform their job

– For example, a function that is supposed to take in
a file name and return the weighted grades simply
returns a 1

• Write up a “functional” main() that calls
these dummy functions

– Help pinpoint other functions you may need

47

www.umbc.edu

How To Implement?

• Top down? Or bottom up?

• It’s up to you!

–As you do more programming, you will
develop your own preference and style

• For now, just use something – don’t code up
everything at once without testing anything!

48

www.umbc.edu

In-Class Example

www.umbc.edu

In-Class Example

• A program that recommends classes to take
based on availability, how often the class is
offered, and the professor’s rating

50

www.umbc.edu

In-Class Example

• What is the “big picture” problem?

• What sort of tasks do you need to handle?

– What functions would you make?

– How would they interact?

– What does each function take in and return?

• What will your main() look like?

51

www.umbc.edu

In-Class Example

• Specifics:

– Get underlying data:

• Availabilities (probably read in from a file)

• Class offering frequency (again, from a file)

• Professor rating (from, you guessed it, a file)

• How to obtain this information in the first place?

– Ask user what courses they want to take

– Find out how many semesters they have left

– etc…

52

www.umbc.edu

Modular Development

www.umbc.edu

Why Use Modular Development?

• Modular development of computer software:

–Makes a large project more manageable

– Is faster for large projects

– Leads to a higher quality product

–Makes it easier to find and correct errors

– Increases the reusability of solutions

54

www.umbc.edu

Managing Large Projects

• Makes a large project more manageable...

• Easier to understand tasks that are smaller
and less complex

• Smaller tasks are less demanding of resources

55

www.umbc.edu

Faster Project Development

• Is faster for large projects...

• Different people work on different modules

• Then put their work together

• Different modules developed at the same time

– Speeds up the overall project

56

www.umbc.edu

Higher Quality Product

• Leads to a higher quality product...

• Assign people to use their strengths

• Programmers with knowledge and skills in a
specific area can be assigned to the parts of
the project that require those skills

– e.g., graphics, analysis, user interface

57

www.umbc.edu

Correcting Errors

• Makes it easier to find and correct errors...

• Sometimes the hardest part of debugging is
finding out where the error is coming from

– And solving it is the easy part

– (Sometimes!)

• Modular development makes it easier to isolate
the part of the software that is causing trouble

58

www.umbc.edu

Reuse of Code (Solutions)

• Increases the reusability of solutions…

• Solutions to small, targeted problems are
more likely to be useful elsewhere than
solutions to bigger problems

– e.g., getting valid user input (returns one int)
 vs. getting and calculating quiz grades

• They are more likely to be reusable code

59

www.umbc.edu

Libraries

• Over time, you may develop your own
“library” of useful functions

• Just like Python has libraries for doing things
with strings, opening and writing to files, and
other common tasks you might want to do

60

www.umbc.edu

In-Class Design Exercise

• Write a program that draws this picture of a
house

61 Based off a CMSC 104 exercise by Brooke Stephens

www.umbc.edu

Top Level

• Draw the outline of the house

• Draw the chimney

• Draw the door

• Draw the windows

62

Main

Draw
Chimney

Draw
Door

Draw
 Windows

Draw
 Outline

www.umbc.edu

Breaking it Down

• The door has both a frame and knob

–We could break this into two steps

63

Main

Draw
Chimney

Draw
 Windows

Draw
 Outline

Draw
Door Frame

Draw
 Knob

Draw
Door

www.umbc.edu

Draw
Window 3

Draw
Window 2

Draw
Window 1

Code Reuse

• There are three windows to be drawn

64

Main

Draw
 Windows

Draw
 Outline

. . .

www.umbc.edu

A “Window” Function

• But the windows look the same

– They just have a different location

• So, we can reuse the code that draws a window

• Write a drawWindow() function that
takes in the location of where the window
should be drawn

 65

www.umbc.edu

Any Other Questions?

www.umbc.edu

Announcements

• Homework 7 is out

–Due by Monday (April 4th) at 8:59:59 PM

• Project 1 will be out later that night

• Take the survey on Blackboard!

67

